EFFECTS OF EXERCISE ON APPETITE AND FOOD INTAKE REGULATION

Jan Bilski1 (ABDEF), Aneta Teległów2(ABEF), Janina Zahradnik-Bilska3(ABDE), Artur Dembiński4(ABF), Zygmunt Warzecha4(ABF)

1Department of Ergonomics and Exercise Physiology, Jagiellonian University Medical College, Cracow, Poland
2Department of Clinical Rehabilitation, University School of Physical Education, Cracow, Poland
3Department of Gastroenterology, Hepatology and Infectious Diseases, Jagiellonian University Medical College, Cracow, Poland
4Department of Physiology, Jagiellonian University Medical College, Cracow, Poland

Abstract
In this review, we discuss the effects of acute and chronic exercise on appetite and food intake regulation, the potential mechanisms involved and its relationship with hormonal and metabolic changes that affect energy balance. The mechanisms of post exercise short-term appetite modification remain unclear and although the role of orexigenic and anorexigenic peptides is possible hypotheses, it still remains unproven. Motivation to eat and food intake in response to acute exercise seem to be modulated by gender, body weight and eating behavior. In general, acute exercise has no effect on subsequent EI in men, whereas in women an increase in EI is usually observed, either decreasing or abolishing the effects of exercise on EB. Normal weight women, unlike men, report an increased palatability of foods with exercise and do not experience the transient suppression of hunger observed immediately after exercise. The evidence to date emphasizes the need to increase physical exercise levels, particularly because of the high prevalence of obesity. More research is needed to explain the mechanisms behind the post exercise adjustments in short-term appetite control, and their long-term consequences.

Key words: appetite, energy intake, exercise, leptin, ghrelin

Introduction
Body weight is regulated by a balance between food intake and energy expenditure and exercise is an effective method of increasing the latter. In human organism exists complex physiological system which balances energy intake (EI) and energy expenditure (EE) consisting of afferent signals, integrated by peripheral nerves and brain centers (1). However, evolutionary pressure has resulted in a drive to eat when food is available and in a shift in diet towards increased intake of energy-dense foods. This situation is also associated with a decrease in the quantity and intensity of physical activity (PA), caused by dramatic changes in lifestyle (2). The object of this article is to review the role of physical activity in influencing food intake.

Food intake control - an overview
Feeding behavior is a complex interaction of various processes controlling the initiation and termination of meal, its size, composition and frequency, and the long-term regulation of food intake in relation to body energy requirements. Food intake behavior in general and appetite in particular depends also on various aspects of eating patterns such as energy density of foods consumed, variety of foods accepted and palatability of the diet. It is associated with sensory aspects of food (sight, taste and smell), emotional cues, social situations, and cultural conventions. Sensory information interacts with internal physiologic signals that relate the nutrient and energy status of the body to determine the time, size, and composition of a meal. This information is integrated in the central nervous system, predominantly in the hypothalamus (3,4). Physiological signals generated by the sight, smell and even idea of meal represent the cephalic phase of appetite. Gastric and intestinal signals also provide important information on the quantity and composition of the ingested nutrients. Afferent information from the mouth provides primarily positive and that from the stomach and intestine primarily negative feedback for eating. In addition, the intraluminal food and digestion products initiate the secretion of a plethora of hormones and peptides (5,6).

A central control of food intake
It is well established that the hypothalamic region of the brain plays a key role in the central regulation of eating behavior in humans and a role for the ventromedial nucleus as a ‘satiety centre’ and the lateral hypothalamic nucleus (LHA) as a ‘hunger centre’ was
suggested. However, food intake behavior is now thought to be regulated by neuronal circuits, which signal using specific neuropeptides (7). In particular, the arcuate nucleus (ARC) plays an essential role in the integration of signals regulating appetite with two populations of neurons. One neuronal circuit inhibits food intake, *via* the expression of the neuropeptides pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) and the other stimulates food intake, *via* the expression of neuropeptide Y (NPY) and agouti-related peptide (AgRP). From the arcuate nucleus, these neurons project to second-order, melanocortin 4 receptor (MC4R) expressing neurons in brain areas that are involved in energy homeostasis such as the paraventricular nucleus (PVN), LHA, and dorsomedial hypothalamus (DMN). After feeding, augmented leptin concentration stimulates POMC neurons, increasing melanocortin levels while inhibiting AgRP neurons. This in turn stimulates signaling at MC4R, decreasing food intake and increasing energy expenditure. During fasting, a decrease in leptin inactivates POMC neurons (reducing melanocortin levels) and stimulates AgRP expression. The resultant decrease in MC4R signaling stimulates feeding and reduces energy expenditure (7).

NPY is the most potent stimulator of feeding known with a key site of action in the paraventricular nucleus (PVN) of the hypothalamus (8–10). CART is co-expressed with α-MSH in the ARC. Melanocortins, including adrenocorticotrophin and melanocyte-stimulating hormones (MSHs), are peptide-cleavage products of the POMC molecule and exert their effects by binding to the melanocortin receptor family (10). The caudal brainstem nucleus of the solitary tract (NTS) is the initial central nervous system (CNS) terminus for a variety of gastrointestinal mechanical, nutrient chemical and gut peptide signals that limit the amount of food consumed during a meal. It receives projections from gut vagal and non-vagal visceral afferents and reciprocally connects to a range of hypothalamic and limbic system sites that play significant roles in the neural processing of meal-related stimuli and in determining food consumption (11,12).

The motivational state is a product of limbic influences relayed by the amygdala, and reward factors. Amygdala is one of critical centers to regulate weight and ingestive behavior. Robust increases in body weight and food intake has been observed in rats with lesions of the basolateral amygdala (BLA) and postorodorsal amygdala (PDA). Adding reward experience to food is a way of avoiding foods with taste indicating the presence of noxious substances, and promoting those which taste signals particular nutritional value. As a result, coupling feeding with pleasure may override normal satiety mechanisms, resulting in hyperphagia and obesity. The sensation of reward is, however, influenced by energy status. Thus, signals of energy status, such as leptin, are able to influence the reward pathways (13). The reward circuitry is complex and involves interactions between several signaling systems. Opioids play an important role, as a lack of either enkephalin or β-endorphin in mice abolishes the reinforcing property of food, regardless of the palatability of the food tested. In man, opiate antagonists are found to reduce food palatability without reducing subjective hunger (14,15). The endocannabinoid system regulates food intake via central and peripheral mechanisms and may be involved in the motivation to find and eat rewarding foods. Within the hypothalamus, endocannabinoids may influence food intake by regulating expression and/or action of anorectic and orexigenic mediators in the PVN, LH, and VMN. Levels of endogenous cannabinoids are increased within the duodenum with fasting and may act via the vagus and brainstem to reduce feelings of satiety (16,17).

Peripheral control of food intake

A number of circulating substances can have an important influence on food intake behavior through their actions on the hypothalamus, the brain stem, or afferent autonomic nerves. They come from at least three sites: adipose tissue, the gastrointestinal tract and the endocrine pancreas.

Peripheral signals from adipose tissue

It is now obvious that adipose tissue is not mere storage depot of excess energy but an endocrine organ which plays a prominent role in regulation of satiety, carbohydrate and lipid metabolism, and insulin sensitivity. In addition to leptin, other cytokines including tumor necrosis factor (TNF)-α, interleukin-6 (IL-6), resistin, visfatin, acylation stimulation protein, and adiponectin have been identified as adipose-secreted proteins that are collectively referred to as adipocytokines (18).

Leptin influences energy homeostasis, immune and neuroendocrine functions acting in the CNS through a class 1 cytokine receptor. Leptin inhibits NPY/AgRP neurons, and fasting significantly upregulates the expression of NPY and AgRP. In contrast, POMC/CART neurons are stimulated by leptin and fasting decreases POMC expression. Although its action within the hypothalamus is critical to its anorexigenic effects, there are other sites important for leptin action, including the vagal afferents, caudal brainstem and the ventral tegmental area. Acting upon dopaminergic neurons in this latter region, leptin also influences the reward and motivational aspects of ingestive behavior (19).

Adiponectin is an abundantly expressed adipokine in adipose tissue and has direct insulin sensitizing activity. In addition, adiponectin enhances AMP-acti-
vated protein kinase activity in the arcuate hypothalamus via its receptor AdipoR1 to stimulate food intake and decreases energy expenditure (20). Visfatin is a recently discovered adipokine, which is highly expressed in visceral fat. Adipocyte visfatin expression and plasma concentrations increase with obesity in animals and humans and it exhibits an insulin mimetic effect. Intracerebroventricular injection of visfatin caused orexigenic effects in chicks (21).

Peripheral signals from the gastrointestinal tract and the endocrine pancreas

Insulin has a major and unique role in controlling the disposition of nutrients in the periphery. Insulin receptors are widely distributed within the brain and are found within the ARC on POMC neurons. Insulin has a potent appetite-suppressive effect when given centrally, although it is unlikely that this is mediated via POMC neurons (22,23). Leptin and insulin could regulate the body weight not only directly, but also indirectly by modulating the sensitivity of the brain to satiety signals (24).

Ghrelin discovered as an endogenous ligand for the growth hormone secretagogue receptor (GHSR) is an orexigenic factor produced mainly by P/D1 cells lining the fundus of the human stomach, but also in duodenum, ileum, caecum and colon. It has been proposed to be an enteric signal involved in energy homeostasis, being unique in that it stimulates appetite. An increase in circulating ghrelin levels may occur as a consequence of the anticipation of food, or may have a physiological role in initiating feeding. Ghrelin is thought to exert its orexigenic action via the ARC of the hypothalamus acting on neuropeptide NPY and AgRP. A new set of ghrelin-positive neurons within the hypothalamus, lying between the dorsal, ventral, paraventricular, and arcuate nuclei, were identified by immunohistochemistry (25). At least part of ghrelin and leptin signaling from the stomach is mediated by an ascending neural network through the vagus nerve and brainstem nuclei that ultimately reaches the hypothalamus. Ghrelin also may engage mesolimbic reward circuitry to increase the motivation to obtain food (26). Obestatin is encoded by the same gene as ghrelin and also present in stomach. Obestatin was reported to have opposite actions to ghrelin in the regulation of food intake, emptying of the stomach and body weight (27).

Pancreatic polypeptide (PP), peptide YY (PYY), and NPY share a similar structure known as the PP-fold (28). PP from endocrine pancreas and PYY from the L-cells in distal gastrointestinal tract, particularly the ileum, colon and rectum are secreted in proportion to the energy intake. Their infusion decreased appetite, and caused a reduction in food intake. PP may also exert some anorectic action via the vagal pathway to the brainstem, as vagotomy seems to reduce its efficacy (6). In contrast, the central actions of PYY are orexigenic (29).

Main products generated from proglucagon are glucagon in the pancreas and oxyntomodulin (OXM), glucagon-like peptide-1 (GLP-1) and 2 (GLP-2) in the brain and intestine (30,31). OXM is released from the gut postprandially, in proportion to energy intake, and circulating levels of OXM are elevated in several conditions associated with anorexia. Central injection of OXM reduces food intake and weight gain in rodents (32). Intravenous administration of GLP-1 in humans decreases food intake in a dose-dependent manner. Within the hypothalamus, GLP-1-containing nerve fibers and terminals have been shown to be located in the PVN, LHA and DMN, well known as integrative areas for feeding regulation. In addition, GLP-1 is also present in the amygdala, a brain region providing neuronal input to the hypothalamus and participating in the regulation of ingestive behavior (33).

Cholecystokinin (CCK) is released in the duodenum and jejunum, in response to fat- or protein-rich chyme entering the duodenum and is also found within the brain where it functions as a neurotransmitter involved in diverse processes such as reward behavior, memory and anxiety, as well as satiety. Administration of CCK has long been known to inhibit food intake by reducing meal size and duration. Peripheral CCK may act both on the vagal nerve and directly on the CNS by crossing the blood brain barrier (34). Orexins are produced in endocrine cells in the gut in addition to neurons in the LHA. A recent study localized the orexin-1 receptors on vagal afferent neurons that also expressed CCK-1 (A) and leptin receptors and showed that orexin inhibited the response of afferent nerve fibers to CCK (35).

Exercise and food intake control

Effects of exercise on motivation to eat and energy intake

Physical activity was believed to be an unproductive form of weight control because of the assumed accompanying increase in food intake. Recently, some studies have shown however that acute exercise induces a short inhibition of appetite, even if this does not automatically translate into a decrease in following food intake (36-38). Interestingly, only 19% of the intervention studies report an increase in energy intake after exercise, and 65% show no change (39). Also when the physical activity level decreases, food intake does not seem to be down-regulated in the same way. These observations stressed the relatively weak coupling between energy intake and expenditure (37,39-48).
Animal studies

In rats forced exercise such as extensive treadmill running or strenuous swimming resulted in significant reductions in appetite, food intake, and body weight compared with sedentary animals (49-54). Lateral ventricular injection of a CRF antagonist prevented the effects of exercise on food intake and body weight suggesting a major role for CRF in the anorexia caused by exercise in male rats (55). However, lesions of either the paraventricular nucleus or the central nucleus of amygdala, where the main functional sites for brain CRF in food intake control have been identified (56), did not prevent the inhibitory effects of exercise on food intake and body weight (57,58). It has been demonstrated that exercise increased the concentration of the NPY in multiple hypothalamic sites including the arcuate nucleus, the dorsomedial nuclei, the medial preoptic area, and the lateral hypothalamus (59). Contrary to forced exercise, voluntary exercise decreased food intake only in the short term (within the initial 1–2 wk), with a subsequent normalization or even increased intake in response to the energy demands of exercise (60,61). Voluntary exercise in rats significantly decreased body weight and resulted in a significant elevation of CRF mRNA expression in the dorsomedial hypothalamus but not the paraventricular nucleus. Seven-day running wheel access also resulted in elevated arcuate nucleus and DMH NPY gene expression. Exercise-induced reductions of food intake and body weight were significantly attenuated by ventricular injection of the CRF antagonist and effect on food intake was specific to a blockade of activity-induced changes in meal size (62).

Human studies

Even though most human studies show no impact of acute exercise on appetite or subsequent EI this is rather controversial area. One reason that studies have not demonstrated changes in EI could be that they haven’t follow EI for an adequately long time after the increased physical activity interventions, and that the exercised-induced rise in EE was not big enough to stimulate appetite. However, even with a high dose of exercise (gross exercise-induced increase in EE = 4.6 MJ) in a single day and tracking EI for the following two days, there was no compensatory rise in hunger and EI (40). Most of the evidence implies that exercise-induced changes in energy metabolism appear to have only a weak influence on eating behavior. In several human studies in spite of a lack of an effect on EI there was observed a considerable decrease in subjective hunger after intensive exercise. This exercise-induced anorexia was observed only during, and for a short time after intensive (>60 % VO\textsubscript{max}) exercise. This suppression of hunger is short lived and not seen with low-intensity exercise (38,42,43,45,63). A redistribu-
almost totally compensate for the exercise-induced EE (73-76). This might contribute to the observation that exercise often fails to induce weight loss in women. It was postulated that light exercise could be better at favoring negative energy balance in young women and that intensive exercise could be better suited for men (41).

Obesity can also affect the response to exercise and while it has been shown that normal weight individuals (mainly women) increase their EI in response to a 3-day exercise intervention, compared with a similar period of rest, obese subjects fail to show such a compensatory response (77). Recently, Borer et al. have shown that after exercise appetite was suppressed in lean but not in obese women and suggested a role for leptin in this observation (78).

Swimmers have higher energy intakes than other athletes and eat more energy than they expend. Some research suggests that this is due to the cool temperatures in which swimmers train. By contrast, runners and cyclists usually experience an increase in body temperature during training, which may serve in the short term to suppress appetite. The classical „thermostatic” theory of food intake proposed as the method in which the additional heat produced in the body causes satiety (79) has got lately some molecular basis (80).

Although exercise is able to produce a negative EB in the short to medium term in the absence of dietary restrictions, long-term exercise only results in modest weight loss (81). This relative lack of efficacy in inducing weight loss does not mean that exercise has no benefits in obesity treatment. Regular exercise, even without weight loss is associated with a substantial reduction in total and visceral fat and with a significant improvement in fitness levels in obese individuals (82). There was argued that physically active persons have a better ability to control their food intake and energy balance because of increased appetite sensitivity. Recently, Long et al. (55) demonstrated that habitual exercisers have an increased accuracy of short-term regulation of food intake in compensation for high-carbohydrate preload. Insulin sensitivity has been proposed as one mechanism by which activity-induced improvements in appetite regulation occur. Exercise is known to increase insulin sensitivity (83), and insulin sensitivity is known to be involved in satiety induced by particular foods (84). Following a period of intensive exercise (70% VO,max for 50 min), subjects were better able to discriminate between the energy values of so-called energy-rich and non-energy-rich beverages (85). Consequently, physical activity could also modify macronutrient preferences and food choices; this response reflected in the food quotient of the diet selected following episodes of physical activity (42,86). This effect could be identified via preferences for particular tastes associated with certain nutrients, e.g. sweetness, that would normally be associated with carbohydrate energy needed to replace the glycogen used in exercise (38). Physical exercise may influence appetite by modulating the hedonic response to foods, i.e. individuals would report greater pleasure from food consumption following a period of exercise. This phenomenon has been demonstrated for female dieters who showed increased ratings of pleasantness for a range of foods after exercise (87). These observations indicated that physical activity can improve the sensitivity of the appetite control system, adjust macronutrient preferences or food choices and enhance the pleasure derived from food consumption.

Table 1. Studies assessing the effects of exercise on hunger scores and energy intake

<table>
<thead>
<tr>
<th>Reference</th>
<th>Subjects</th>
<th>Intervention</th>
<th>Energy intake</th>
<th>Hunger scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thompson et al. (45)</td>
<td>Normal weight college-age males</td>
<td>Exercise at 35% and 68% VO,max (cycle ergometer) versus resting</td>
<td>No significant effect</td>
<td>Brief hunger scores decrease</td>
</tr>
<tr>
<td>Kissileff et al. (63)</td>
<td>Obese and nine nonobese women</td>
<td>Exercised either strenuously (90 W) or moderately (30 W) (cycle ergometer) for 40 min versus resting</td>
<td>Intake of a liquefied test meal (1.04 kcal/g) 15 min after exercise was significantly decreased after strenuous exercise in the nonobese women</td>
<td>Not tested</td>
</tr>
<tr>
<td>King et al. (40)</td>
<td>Lean males regular exercisers</td>
<td>Treadmill running at approximately 70% max heart rate for 50 min.</td>
<td>No significant effect</td>
<td>Hunger scores decrease</td>
</tr>
<tr>
<td>King et al. (42)</td>
<td>Lean, healthy males</td>
<td>Exercise session (at 70% VO,max (running or cycling) versus resting</td>
<td>Delay to the onset of eating. No significant effect on the total amount of food eaten, but high-fat/low-carbohydrate foods energy intake was significantly elevated</td>
<td>Transitory hunger scores decrease</td>
</tr>
<tr>
<td>Reference</td>
<td>Subjects</td>
<td>Intervention</td>
<td>Energy intake</td>
<td>Hunger scores</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>King et al. (41)</td>
<td>Dietary unrestrained, normal weight females</td>
<td>Exercise at 70% VO$2$${\text{max}}$ versus resting</td>
<td>No significant effect</td>
<td>No significant effect</td>
</tr>
<tr>
<td>Westerterp-Plantenga et al. (38)</td>
<td>Normal weight males</td>
<td>2 h of cycling at 60% of VO$2$${\text{max}}$ versus resting</td>
<td>Energy intake decreased</td>
<td>Hunger scores decreased and perception of bitterness at a low concentration increased</td>
</tr>
<tr>
<td>Lluch et al. (87)</td>
<td>Dietary restrained females, normal weight and regular exercisers</td>
<td>50 min of cycling at 70% VO$2$${\text{max}}$ versus resting</td>
<td>No significant effect on total energy intake but high-fat/low-fat foods energy intake significantly elevated</td>
<td>No significant effect on hunger scores, exercise raised the perceived pleasantness of foods</td>
</tr>
<tr>
<td>Imbeault et al. (72)</td>
<td>Young moderately active, normal weight men</td>
<td>Treadmill running at 35% VO$2$${\text{max}}$ and 75% VO$2$${\text{max}}$ for a duration allowing an exercise energy expenditure of about 2050 kJ</td>
<td>No significant change in total energy and macronutrient</td>
<td>No significant change in post-exercise subjective levels of hunger and fullness</td>
</tr>
<tr>
<td>Pomerleau et al (76)</td>
<td>Moderately active normal weight females</td>
<td>Low- and high-intensity exercise sessions at 40% and 70% of VO$2$${\text{max}}$ versus resting</td>
<td>High-intensity exercise increases energy intake in women</td>
<td>No significant effect</td>
</tr>
<tr>
<td>Erdmann et al. (88)</td>
<td>Males and females normal weight</td>
<td>Group A cycling for 30 min at 50 W and 100 and group B at 50 W for 30, 60 and 120 min versus resting</td>
<td>Food intake after 120 min of cycling was significantly greater compared to control, 30 min and 60 min exercise</td>
<td>No significant effect</td>
</tr>
<tr>
<td>Martins et al. (67)</td>
<td>Normal-weight volunteers (males and females)</td>
<td>Cycled for 60 min at 65% of max hear rate or rested</td>
<td>Exercise significantly increased subsequent absolute EI, but produced a significant decrease in relative EI after accounting for the energy expended during exercise</td>
<td>During the exercise period, hunger scores were significantly decreased; however, this effect disappeared in the post-exercise period</td>
</tr>
<tr>
<td>Dodd et al (89)</td>
<td>11-year-old girls (six lean, six overweight)</td>
<td>Morning and afternoon cycling exercise (1.5 MJ energy expenditure) was subsequently imposed on 2 consecutive days as part of the 5-day intervention.</td>
<td>No exercise-induced differences in total daily or 5-day total energy intake were observed between groups or treatments</td>
<td>Overweight girls, rated their appetite immediately after exercise as being stronger than they rated it before exercise</td>
</tr>
<tr>
<td>Broom, et al. (90)</td>
<td>Normal weight male students</td>
<td>Resistance exercise: a 90-min free weight lifting session followed by a 6.5-h rest period and aerobic exercise: a 60-min run followed by a 7-h rest period versus resting</td>
<td>Not tested</td>
<td>Suppressed hunger during aerobic and resistance exercise</td>
</tr>
<tr>
<td>Cheng et al. (91)</td>
<td>Moderately active normal weight young men</td>
<td>Exercise at 60% of VO$2$${\text{max}}$ for 50 min performed three trials in a random exercise 2h after or 1h before a meal.</td>
<td>Not tested</td>
<td>Exercise performed 2h after meal extended the appetite suppressing effect of food intake. Exercise prior to food intake decreased appetite</td>
</tr>
</tbody>
</table>
Effect of exercise on plasma levels of appetite-related hormones

Effect of exercise on release of hormones engaged in food intake regulation is a subject that has obtained a lot of consideration lately, with a special attention on leptin and ghrelin. It seems that circulating leptin levels are only decreased by exercise with high intensity and long duration and in the absence of weight loss no significant change in the fasting plasma levels of this hormone is observed (92-98). In one study, however marked and significant decrease in plasma leptin was observed in marathon swimmers after 25 km swimming race (99) even after adjusting for BMI and fat mass. This effect could be explained by a fact that subjects were not in a fasting state, therefore allowing the release of insulin, which is known to exert a negative feedback over leptin secretion (100). Extreme exercise in healthy normal weight men was reported to significantly increase plasma leptin concentrations and authors suggested that origin of this increment was rather from stomach rather than from the adipose tissues (101). A number of studies have investigated the effects of training on leptin concentrations. These studies have reported either no effect of training on leptin concentrations with short-term training (<12 weeks), or a reduction in leptin levels in long-term training (>12 weeks) studies. The reduction of leptin has been attributed to alteration in energy balance, improvements in insulin sensitivity and alteration in lipid metabolism and lipid concentration (102). Some authors have shown that circulating leptin levels in athletes are lower than in sedentary subjects, maybe because of the lower body fat content of the sportsmen and probably as a result of the complex neurohormonal adaptations on the long-term physical training (103).

Ghrelin is a potent GH secretagogue and exercise is a potent stimulus of GH secretion; thus, ghrelin could affect GH responses to exercise and recovery or GH could alter ghrelin levels via negative feedback (25,102). Although acute exercise, has been shown without effect on fasting plasma levels of ghrelin, in either normal weight (97) or overweight volunteers, (104) the results may be dependent on the intensity of exercise, with low- rather than high-intensity exercise stimulating total plasma ghrelin levels independently of its duration (88). There is some evidence that ghrelin levels are suppressed following resistance exercise of moderate intensity and are lower with higher GH concentrations during aerobic exercise. It has been suggested that negative feedback from elevated GH produces the reductions. Long-term chronic exercise produces increases in ghrelin levels, especially when weight loss is produced in overweight patients. In rats exercise caused increases in ghrelin concentrations. In one of a few studies which used acylated form of ghrelin (AG), one which exhibits orexigenic properties described a significant suppression in AG after the exercise, as well as a reduction in subjective hunger (105). Mackelvie et al (106) measured the effect of 5 days of aerobic exercise on total ghrelin, AG and desacyl ghrelin (DG) plasma levels in fasted state and postprandially, in normal weight and obese adolescent boys. They observed no change in total ghrelin plasma levels, but a significant increase in AG, independent of changes in body weight. The increase in AG was higher in the normal weight group and was associated with an increase in self-reported hunger measures and a decrease in fullness after a meal. Exercise was also associated with a decrease in postprandial DG in normal weight, but with an increase in overweight adolescents (106). Kim and colleagues examined the effect of a 12-week exercise program on total ghrelin, AG and DG in overweight children. They found no change in AG plasma levels but a significant increase in total and DG plasma levels and the decrease in body weight and body fat was strongly associated with the rise in DG plasma levels (107). In recent study on previously sedentary overweight man and women post exercise increase in ghrelin concentration with accompanying lack of appetite inhibition has been shown in women but not men (108).

Limited data suggests that adiponectin concentration presents a delayed increase (30 min) after short-term intense exercise (<60 min) performed by trained athletes (109-111). A sub-maximal aerobic exercise (65% of VO2 max) did not result in significant changes in adiponectin up to 48 h post-exercise in overweight subjects (112). It seems that, adiponectin concentrations do not change in response to long-term exercise (≥60 min). Most training studies which improved fitness levels and affected body composition increased adiponectin concentrations (113,114). Frydelund-Larsen and colleagues examined visfatin mRNA expression in abdominal subcutaneous adipose tissue and skeletal muscle biopsies obtained from healthy young men after 3 h of ergometer cycle exercise at 60% of VO2 max. Adipose tissue but not skeletal muscle visfatin mRNA expression increased threefold in response to exercise. This increase in adipose tissue visfatin was, however, not accompanied by elevated levels of plasma visfatin (115). Exercise training with weight loss induced a significant reduction of plasma visfatin and eotaxin levels in non-diabetic Korean women (116). In recent study Jurimae et al. (117) measured plasma visfatin and ghrelin responses to a single endurance rowing training session in male competitive single scull rowers. Plasma visfatin was reduced, and ghrelin concentration was increased after a 30-min post exercise.

Relatively few studies examined the effects of exercise on the plasma levels of other hormones involved in appetite regulation. Acute exercise was found to increase fasting and postprandial levels of polypeptide YY, CCK, GLP-1 and PP (67,101). A recently published research study investigated the effects of 60 min resistance and aerobic exercise on hunger and circulating levels of the gut hormones acylated ghrelin and peptide YY. Aerobic exercises proved to be effective in the
decreasing of the ghrelin levels, while increasing the amount of peptide YY. On the other hand resistance exercise increased ghrelin levels but did not did not elevate post-exercise PYY levels in the study (90). Ueda et al. examined whether changes in gut hormone levels due to a single bout of aerobic exercise differ between obese young males and normal controls, and attempted to determine the involvement of hormonal changes during exercise in the regulation of energy balance in these obese subjects. Plasma levels of PYY and GLP-1 were increased by exercise, whereas plasma ghrelin levels were unaffected by exercise and there was no significant difference between the two groups (118).

In recent study (91) researchers wanted to assess how the timing of that meal would impact the effect of exercise (60% $\text{VO}_{2\text{max}}$ for 50 minutes) on the appetite and some of its mediators – ghrelin, leptin and PYY$_{3-36}$. The study found that when exercise was performed 2 hours after meal consumption extended the appetite suppressing effect of food intake. Furthermore, plasma PYY (3-36) concentration tended to be elevated by exercise after meal consumption. Exercise prior to food intake decreased appetite and increased plasma ghrelin concentrations. No response to timing of exercise relative to food intake on plasma leptin concentration was detected. Authors concluded that the timing of exercise to meal consumption may influence appetite and its hormonal regulators and post-meal exercise may extend the suppressive effects of meal consumption on appetite (91).

Table 2. Studies assessing the effect of exercise on peptides involved in food intake control

<table>
<thead>
<tr>
<th>Reference</th>
<th>Subjects</th>
<th>Intervention</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hilsted et al.(119)</td>
<td>Marathon runners (male)</td>
<td>3h of exercise (cycle ergometer) at 40% $\text{VO}_{2\text{max}}$ versus resting</td>
<td>Significant increase in fasting PP levels</td>
</tr>
<tr>
<td>Greenberg et al. (120)</td>
<td>Normal-weight volunteers (males and females)</td>
<td>45 min of exercise (cycle ergometer) at 50% $\text{VO}_{2\text{max}}$, 30 min after breakfast versus resting</td>
<td>Significant increase in postprandial plasma levels of PP</td>
</tr>
<tr>
<td>Hurley et al.(121)</td>
<td>Normal weight sedentary men</td>
<td>10 weeks exercise programme (20 min of jogging at 70% $\text{VO}_{2\text{max}}$, three times/ week)</td>
<td>Slight increase in PP fasting and postprandial plasma levels</td>
</tr>
<tr>
<td>O'Connor et al.(122)</td>
<td>Marathon runners (males and females)</td>
<td>Marathon running</td>
<td>Significant increases in fasting GLP-1 and PP plasma levels</td>
</tr>
<tr>
<td>Bailey et al.(123)</td>
<td>Physically active normal-weight men</td>
<td>Cycling test to exhaustion versus resting 4-week cycling exercise programme (three times/ week with incremental duration and intensity)</td>
<td>Significant increase in fasting CCK plasma levels</td>
</tr>
<tr>
<td>Sliwowski et al.(101)</td>
<td>Normal-weight men</td>
<td>Treadmill run to exhaustion in fasting or fed state (5 min after a liquid meal)</td>
<td>Significant increase in CCK and PP plasma levels after exercise, independently of feeding. Fall in leptin level after meal</td>
</tr>
<tr>
<td>Dall et al. (124)</td>
<td>Healthy and growth hormone-deficient men</td>
<td>Submaximal aerobic exercise on a cycle ergometer for 45 min versus resting</td>
<td>No significant change in ghrelin plasma level</td>
</tr>
<tr>
<td>Ferguson et al.(114)</td>
<td>Normal-weight male and female subjects</td>
<td>60-minute exercise (cycle ergometer) at 65% of $\text{VO}_{2\text{max}}$ versus resting</td>
<td>No significant changes in adiponectin and leptin plasma levels</td>
</tr>
<tr>
<td>Kraemer et al. (125)</td>
<td>Normal-weight men</td>
<td>Concentric and eccentric muscle actions at the same absolute workload</td>
<td>No significant change in ghrelin plasma level</td>
</tr>
<tr>
<td>Zoladz et al. (97)</td>
<td>Normal-weight non-smoking men</td>
<td>Incremental exercise test, with the increase of power output by 30 W every 3 minutes.</td>
<td>No significant effect on plasma ghrelin and leptin levels</td>
</tr>
<tr>
<td>Jamurtas et al.(126)</td>
<td>Healthy overweight males</td>
<td>Exercise bout at about 65% of $\text{VO}_{2\text{max}}$ max</td>
<td>No significant changes in adiponectin plasma levels</td>
</tr>
<tr>
<td>Reference</td>
<td>Subjects</td>
<td>Intervention</td>
<td>Outcome</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Jurimae et al.(109)</td>
<td>College level rowers</td>
<td>Rowing over a distance of 6.5 km at the individual anaerobic threshold.</td>
<td>Adiponectin and leptin were unchanged immediately after the exercise.Adiponectin was significantly increased and leptin decreased after 30 min of recovery</td>
</tr>
<tr>
<td>O'Connor et al.(127)</td>
<td>Endurance-trained male athletes</td>
<td>2-h treadmill running at 60% VO$_2$max versus resting</td>
<td>Significant increases in fasting GLP-1</td>
</tr>
<tr>
<td>Burns et al.(128)</td>
<td>Normal weight men and woman</td>
<td>1-h treadmill run at 73.5% of VO$_2$max versus resting</td>
<td>No significant change in ghrelin plasma level</td>
</tr>
<tr>
<td>Broom et al (129)</td>
<td>Normal weight men</td>
<td>Running for 60 min at 72% of maximum oxygen and after 8 hrs rest test meal versus resting and test meal.</td>
<td>Area under the curve values for plasma acylated ghrelin concentration was lower compared with the control trial.</td>
</tr>
<tr>
<td>Erdmann et al. (88)</td>
<td>Normal weight volunteers (males and females)</td>
<td>Group A cycling for 30 min at 50 W and 100 and group B at 50 W for 30, 60 and 120 min versus resting</td>
<td>Ghrelin concentrations rose significantly at 50 W but remained unchanged during the higher intensity at 100 W.</td>
</tr>
<tr>
<td>Jurimae et al.(130)</td>
<td>Highly trained male rowers</td>
<td>Single scull rowing was performed below and above individual anaerobic threshold</td>
<td>No significant effect in plasma ghrelin and leptin levels</td>
</tr>
<tr>
<td>Jurimae et al.(131)</td>
<td>Elite male rowers</td>
<td>Maximal 6000-m rowing ergometer test</td>
<td>Ghrelin was significantly increased and leptin significantly decreased immediately after the exercise and remained significantly decreased after the first 30 mins of recovery.</td>
</tr>
<tr>
<td>Chanoine, et al. (132)</td>
<td>Normal-weight and overweignt male adolescents</td>
<td>5 consecutive days of supervised aerobic exercise (1 h/day)</td>
<td>Significant increase in GLP-1 response postprandially, independently of weight</td>
</tr>
<tr>
<td>Martins et al. (67)</td>
<td>Normal weight sedentary men and woman</td>
<td>1 h or intermittent cycling at 65% of max heart rate (1 h after breakfast) versus resting</td>
<td>Significant increase in postprandial levels of PYY, GLP-1 and PP. No significant effect of exercise on postprandial levels of ghrelin</td>
</tr>
<tr>
<td>Mackelvie et al. (106)</td>
<td>Normal-weight and overweight male adolescents</td>
<td>One hour after a standardized breakfast, subjects either cycled for 60 min at 65% of their maximal heart rate or rested</td>
<td>Exercise significantly increased PYY, GLP-1 and PP levels. No significant effect of exercise on postprandial levels of ghrelin</td>
</tr>
<tr>
<td>Kyriazis et al (133)</td>
<td>Young healthy obese males</td>
<td>Single exercise session of moderate intensity (58.4 of VO$_2$max) for 60 minutes</td>
<td>No significant effect in plasma ghrelin and leptin levels</td>
</tr>
<tr>
<td>Ghanbari-Niaki et al.(134)</td>
<td>Normal weight woman</td>
<td>Circuit-resistance exercise (9 exercises, 25s per exercise, at 40, 60, and 80% of one repetition maximum.)</td>
<td>No significant changes in plasma obestatin</td>
</tr>
<tr>
<td>Numao et al.(135)</td>
<td>Normal weight healthy men</td>
<td>60-min stationary cycle exercise (50% peak oxygen uptake) followed by 30-min rest versus resting</td>
<td>Total adiponectin and high-molecular-weight adiponectin unchanged</td>
</tr>
</tbody>
</table>
Subjects

Eleven healthy male students

Intervention

Resistance exercise: a 90-min free weight lifting session followed by a 6.5-h rest period and aerobic exercise: a 60-min run followed by a 7-h rest period versus resting

Outcome

Significantly decreased ghrelin during aerobic and resistance exercise and increased PYY during aerobic exercise

Table

Reference	Subjects	Intervention	Outcome
Broom et al. (90) | Eleven healthy male students | Resistance exercise: a 90-min free weight lifting session followed by a 6.5-h rest period and aerobic exercise: a 60-min run followed by a 7-h rest period versus resting | Significantly decreased ghrelin during aerobic and resistance exercise and increased PYY during aerobic exercise
Jurimae et al. (117) | Highly trained male rowers | Rowing training session about 2 h versus resting | Plasma visfatin and leptin were reduced, and ghrelin concentration was increased after a 30-min postexercise
Ueda et al. (118) | Obese young males and normal weight controls | A standardized breakfast followed by constant cycling exercise at 50% VO2 max or rest for 60 min versus resting | Plasma levels of PYY and GLP-1 were increased by exercise, plasma ghrelin levels were unaffected

Even less evidence is available concerning chronic exercise, one study didn’t found any change in fasting cholecystokinin plasma levels in active men and the other reported a slight increase in both fasting and peak postprandial PP plasma levels, in previously sedentary men, after an exercise intervention (67,102). There was no change in obestatin level after short exercise bout in women (134) but in rats moderate treadmill exercise was able to reduce fundus and small intestine obestatin concentrations (136).

Wang and colleagues studied the effects of short- (40 min) and long-term (40 min, 5 days/week for 8 weeks) exercise on levels of appetite regulatory hormones in plasma and hypothalamus of obese rats. After short-term exercise, the plasma concentrations of ghrelin and obestatin were not changed, but NPY level was decreased. Ghrelin and obestatin in the hypothalamus decreased, and recovered 12 after 24 h and NPY increased and recovered after 24 h. After long-term exercise these changes were different in plasma and hypothalamus (137).

Conclusions

An important role for physical activity in obesity prevention and in the long-term maintenance of weight loss has been consistently reported. There is a lot of evidence supporting an advantageous role of exercise on appetite regulation. Physical exercise or training can decrease adiposity and play an important role in energy expenditure and influence hormonal concentrations. Motivation to eat and food intake in response to acute exercise seem to be modulated by gender, body weight and eating behavior. In general, acute exercise has no effect on subsequent EI in men, whereas in women an increase in EI is usually observed, either decreasing or abolishing the effects of exercise on EB. Normal weight women, unlike men, report an increased palatability of foods with exercise and do not experience the transient suppression of hunger observed immediately after exercise. The evidence to date emphasizes the need to increase physical exercise levels, particularly in the face of the high prevalence of obesity. More research is necessary to explain the mechanisms behind the post exercise adjustments in short-term appetite control, and their long-term consequences.

References

Received: January 29, 2009
Accepted: April 30, 2009
Published: May 5, 2009

Address for correspondence:
Hrabek Z
Department of Ergonomics and Exercise Physiology
Grzegorzecka 20
Jagiellonian University Medical College
31-531 Cracow, Poland
tel.: +48 12 421 93 51
fax: +48 12 421 93 51
e-mail: mphilsik@cyf.kr.edu.pl

Aneta Teleglová: aneta.teleglov@awf.krakow.pl
Janina Zahradnik-Bilska: jbiliska@gazeta.pl
Artur Dembiński: mpdembinski@cyf.kr.edu.pl
Zygmun Warzecha: mpwarze@cyf.kr.edu.pl

Authors’ contribution
A – Study Design
B – Data Collection
C – Statistical Analysis
D – Data Interpretation
E – Manuscript Preparation
F – Literature Search
G – Funds Collection